
// .. / / / . . . ×

SYN Cookies

Ed L. Cashin

(B)RATS
November 2001

The Solution . . .

Implications

The Method

Current Status

Appendices

// .. / / / . . . ×

Topics

The Solution and the Problem
Implications
The Method

Current Status
Appendices

The Solution . . .

Implications

The Method

Current Status

Appendices

// .. / / / . . . ×

The Solution and the Problem

Solution: SYN Cookies
Problem: tcpcb Limit

The Solution . . .

Implications

The Method

Current Status

Appendices

// .. / / / . . . ×

Solution: SYN Cookies

Let’s start with the denouement: you don’t need a queue of tcpcb’s.

. use cryptographic hashing to make a sequence number

. don’t allocate tcpcb

The Solution . . .

Implications

The Method

Current Status

Appendices

// .. / / / . . . ×

Problem: tcpcb Limit

In the first part of the tcp handshake, a tcp control block of about 140 bytes
is traditionally allocated to store information about the new connection.

Here is the tcp handshake that we saw in the synkill paper.

paths and some may be lost while others are delivered. IP
provides best-effort delivery, because packets are not dis-
carded unless resources are exhausted or underlying net-
works fail. Datagrams are routed towards their destination.
A set of rules characterize how hosts and gateways should
process packets, how and when error messages should be
generated, and when packets should be discarded.

2.2. Transmission Control Protocol

To ensure reliable communications for applications and
services that need them, the Transmission Control Protocol
(TCP) is available. It resides between IP and the applica-
tion layer. TCP provides a reliable, connection-orienteddata
stream delivery service. As long as there is link layer com-
munication between two communicating endpoints, TCP
guarantees that datagrams will be delivered in order, without
errors, and without duplication. It provides these services by
using flow control mechanisms, such as the sliding window
protocol, and adaptive retransmission techniques.

2.2.1 Three-way Handshake

A

S1

DG M

A - attacker
Si - source
D - destination

M - monitor
G - gateway

S2

Figure 1. Generic network topology

Before data can be transmitted between a source host S �

and a destination host D, TCP needs to establish a connec-
tion between S � and D (see Figure 1). The connection es-
tablishment process is called the three-way handshake (see
Figure 2). The first step in the process is a SYN

�
packet that

is sent from S � to D. The second message, from D to S � , has
both the SYN and ACK flags set indicating that D acknowl-
edges the SYN and is continuing the handshake. The third
message, from S � to D has its ACK bit set, and is an indica-
tion to D that both hosts agree that a connection has been es-
tablished. The third message may contain user payload data.

The three-way handshake also initializes the sequence
numbers for a new connection between S � and D. Sequence
numbers are needed by the TCP protocol to enable reliable

�
TCP packet types are distinguished by flag bits (e.g., SYNchronize,

ACKnowledgment, ReSeT) set in the TCP header code field. In the remain-
der of the paper we will abbreviate TCP control packets by referring to the
flags set in their code field, e.g., SYN instead of TCP control datagram with
the SYN bit set in its code field.

LISTENSYN

ACK

x

y x+1SYN , ACK
SYN_RECVD

S D

CONNECTED

y+1

Figure 2. Three-way Handshake

packet delivery and retransmission. S � sends an initial se-
quence number � with the first datagram: SYN � . In the
second message D acknowledges the first datagram with
ACK ��� � and sends its own sequence number � : SYN � . S �

acknowledges D’s packet in the final message of the three-
way handshake: ACK � � � .

2.2.2 TCP Data Structures

For any TCP connection, under BSD style network code,
there are three memory structures that need to be allo-
cated by both endpoints (See [19]). The socket struc-
ture (socket) holds information related to the local end
of the communication link: protocol used, state informa-
tion, addressing information, connection queues, buffers
and flags. TCP uses the Internet protocol control block
structure (inpcb) at the transport layer to hold information
such as TCP state information, IP address information, port
numbers, IP header prototype and options, and a pointer to
the routing table entry for the destination address. The TCP
Control Block structure (tcpcb) contains TCP specific in-
formation such as timer information, sequence number in-
formation, flow control status, and out-of-band data. The
combined size of these data structures for a single TCP con-
nection may typically exceed 280 bytes.

Different versions of Unix use different data structures
and schemes of allocation, but for the purpose of this discus-
sion, it is sufficient to understand that every TCP connection
establishment requires an allocation of significant memory
resources.

2.2.3 TCP Connection Establishment

When a SYN arrives at a port on which a TCP server is lis-
tening, the above-mentioned data structures are allocated.
There is a limit on the number of concurrent TCP connec-
tions that can be in a half-open connection state, called the

Figure 1.1 tcp handshake

. If O.S. must allocate a tcpcb for each incoming syn packet and . . .

. if there’s a limit to the number that may be allocated

. . . then a syn flood may prevent new tcp connections.

The Solution . . .

Implications

The Method

Current Status

Appendices

// .. / / / . . . ×

Implications

Scales Well
Firewall
Hosts

Caveats

The implications of SYN Cookies as a solution to the vulnerability of having
a finite half-open connection queue.

The Solution . . .

Implications

The Method

Current Status

Appendices

// .. / / / . . . ×

Scales Well

Different from increasing the limit.

Since the queue is eliminated entirely, this specific solution to this specif-
ic problem should scale well, even under currently-popular ddos attacks
through fat pipes.

The Solution . . .

Implications

The Method

Current Status

Appendices

// .. / / / . . . ×

Firewall

A firewall with syn cookies turned on could play one of the roles described
in the synkill paper.

shake, because � needs to be part of the hash function ar-
gument. As there are only

��� �
TCP sequence numbers, this

technique introduces a small probability that an old or a sin-
gle forged packet might open a connection. Section 4.4.1
discusses an extension of this approach.

4.4. Firewall Approach

As many sites connected to the Internet are already some-
what protected by firewalls, it makes sense to try to use fire-
walls to protect against SYN flooding. Several firewall ven-
dors have already made products available to increase pro-
tection against the attacks [14, 15], and some other solutions
have been proposed.

Firewall-based protection approaches are based on the
idea that every packet destined to a host inside the firewall
has to be examined by the firewall first, and thus decisions
can be made on its authenticity and actions can be taken to
protect the internal hosts. This can be effective if, apart from
the normal blocking done by the firewall, some other spe-
cialized mechanism is put in place to deal with SYN flood-
ing.

The drawbacks of this approach are delays on every
packet for additional processing. Not every firewall prod-
uct is capable of adding functionality, such as a module to
protect against SYN flooding.

The two main approaches are described below.

4.4.1 Firewall as a Relay

In this approach, when a packet for an internal host is re-
ceived the firewall answers on its behalf. Only after the
three-way handshake is successfully completed does the
firewall contact the host and establish a second connection.

1. In the case of an attack (see Figure 4), the firewall an-
swers to the SYN sent by the attacker. Because the
final ACK never arrives, the firewall terminates the
connection, and the host never receives the datagram.
This mode of protection is only effective if the firewall
itself is not vulnerable to SYN flooding.

2. In the case of a legitimate connection (Figure 5), after
the firewall receives the final ACK, it creates a new
connection to the internal host on behalf of the orig-
inal client. This makes the protected machines vul-
nerable to the new degradation of service attack de-
scribed in Section 2.2.3. Once the connection is es-
tablished, the firewall has to keep acting as a proxy
to translate the sequence numbers in the packets that
flow between the client and the server.

This method has the drawback of introducing new delays
for legitimate connections. Delays are introduced by extra

SYN x

SYN+ACK

FirewallA D

Figure 4. Attack scenario with a relay-firewall
protection

processing done at the firewall, both at connection establish-
ment time and for each data packet. The obvious advan-
tage is that the destination host never receives spoofed SYN
packets.

An alternative approach in which the firewall could pre-
dict the sequence number that is going to be used by the host
(see Section 4.3) would allow the firewall to intervene in the
same manner when establishing the connection, without the
need for translating sequence numbers for each data packet.

4.4.2 Firewall as a Semi-transparent Gateway

In this approach, the firewall lets SYN and ACK packets go
through, but monitors the traffic and reacts to it. We call this
the semi-transparent gateway approach.

The firewall passes SYN packets destined to internal
hosts. When the host responds with a SYN+ACK packet,
the firewall forwards it, but reacts by generating and send-
ing an ACK packet that seems to come from the client. This
has the effect of moving the connection out of the backlog
queue in the host, thus freeing the resources that were allo-
cated for the half-open connection.

1. In the case of an attack (see Figure 6), when the host
sends the SYN+ACK, the gateway lets it pass and
generates and sends the ACK that moves the con-
nection out of the backlog queue. If the firewall has
not received the legitimate ACK after some (arguably
short) period of time, it will send a RST packet, ter-
minating the connection.

2. In the case of a legitimate connection (Figure 7) the
firewall generates and sends an ACK packet. When
the legitimate ACK packet arrives, the firewall lets it
pass, and the “duplicate” ACK packet arrives at the
host. TCP is designed to cope with duplicate pack-
ets, so the duplicate packet is silently discarded. Now
data can flow freely in both directions, without further
firewall intervention.

Figure 2.1 invulnerable firewall

The Solution . . .

Implications

The Method

Current Status

Appendices

// .. / / / . . . ×

Hosts

“If it’s possible to make a firewall immune to dos via syn flooding, why not
make the hosts invulnerable?”

The Solution . . .

Implications

The Method

Current Status

Appendices

// .. / / / . . . ×

Caveats

Even without the tcpcb limit, other resources are limited.

Examples: Network bandwidth; cpu.

The Solution . . .

Implications

The Method

Current Status

Appendices

// .. / / / . . . ×

The Method

People
Disadvantages

The Algorithm: ISN
The Algorithm: Handshake Step 2
The Algorithm: Handshake Step 3

The Solution . . .

Implications

The Method

Current Status

Appendices

// .. / / / . . . ×

People

? Dan Bernstein

? Eric Schenk

? Andi Kleen

The Solution . . .

Implications

The Method

Current Status

Appendices

// .. / / / . . . ×

Disadvantages

. no fancy tcp options during syn flood.

. limited choice of mss values.

. lost ack may hang clients.

. brute-force sequence number guessing

inject 1 per 227 packets

Also, unlike the synkill solution, only one host is protected.

The Solution . . .

Implications

The Method

Current Status

Appendices

// .. / / / . . . ×

The Algorithm: ISN

2 constant secret keys: “sec1” and “sec2”.

A constant sorted table of 8 common mss values, “msstab”.

Keep track of a “last overflow time.”

Maintain a counter that increases slowly over time and never repeats, such
as “number of seconds since 1970, shifted right 6 bits.”

When a syn comes in from (saddr, sport) to (daddr, dport) with isn x, find
the largest i for which msstab[i] ≤ the incoming mss. Compute . . .

z = MD5(sec1, saddr, sport, daddr, dport, sec1)

+ x

+ (counter � 24)

+ (MD5(sec2, counter, saddr, sport, daddr, dport, sec2) % (1� 24))

. . . and then . . .

y = (i� 29) + (z % (1� 29)).

. . . where y is the isn.

The Solution . . .

Implications

The Method

Current Status

Appendices

// .. / / / . . . ×

The Algorithm: Handshake Step 2

If not out of memory for tcpcb’s, create a tcpcb as usual, with y as our isn.
Send back a synack packet.

Else the queue is full, so set the “last overflow time” to the current time and
send the synack anyway, with all fancy options turned off. Do not allocate
tcpcb.

The Solution . . .

Implications

The Method

Current Status

Appendices

// .. / / / . . . ×

The Algorithm: Handshake Step 3

1. Look for a (saddr, sport, daddr, dport) tcpcb. If it’s there, done.

2. If the “last overflow time” is earlier than a few minutes ago, give up.

3. Figure out whether isn makes sense. This means recomputing y as above,
for each of the counters that could have been used in the last few minutes
(say, the last four counters), and seeing whether any of the y’s match the
isn in the bottom 29 bits. If none of them do, give up.

4. Create a new tcpcb. The top three bits of our isn give a usable mss.
Turn off all fancy options.

The Solution . . .

Implications

The Method

Current Status

Appendices

// .. / / / . . . ×

Current Status

Kleen’s Advice
Bernstein’s Perspective
Valuable TCP Options

Random Drop
Tests

Conclusion

The Solution . . .

Implications

The Method

Current Status

Appendices

// .. / / / . . . ×

Kleen’s Advice

Andi Kleen, who implemented the syncookie feature in the Linux kernel, says
this:

From: Andi Kleen <ak@suse.de>

Subject: Re: testing syncookie functionality

To: Ed L Cashin <ecashin@terry.uga.edu>

Date: Tue, 6 Nov 2001 01:17:05 +0100

Hi,

First I would suggest not putting much time anymore

into syncookies. They’re basically obsolete because

the cost of not using time stamps and SACK is too high,

and linux has the infrastructure now to keep a big

enough real queue that makes them not really needed

anymore.

Also they don’t have enough bits to be secure from

brute force.

The Solution . . .

Implications

The Method

Current Status

Appendices

// .. / / / . . . ×

Bernstein’s Perspective

From: "D. J. Bernstein" <djb@cr.yp.to>

Subject: Re: SYN cookies testing and use

To: Ed L Cashin <ecashin@terry.uga.edu>

Date: 9 Nov 2001 19:58:17 -0000

Kleen is an idiot. Here’s what Google’s Jim Reese said

about SYN cookies in a talk a year ago:

Security. Obviously a big issue, as we get more and

more of these SYN flood attacks. ... The script

kiddies are out there and they’re out there to get

us. We’ve seen a _tremendous_ increase in the amount

of attacks on us as we grow more popular. It’s

inevitable. Every site sees it.

SYN flood attacks are actually extremely well

handled now by the Linux kernel with SYN

cookies. They work extremely well. If you’re not

using them, you should be.

The Solution . . .

Implications

The Method

Current Status

Appendices

// .. / / / . . . ×

Valuable TCP Options

Today some tcp options are more critical than in 1996.

. sack and d-sack

Selective acknowledgement and duplicate sack.

. timestamping

For rtt calculation and also protection against wrapped sequence num-
bers.

. window scaling

These options are especially important for “long fat pipes.”

The Solution . . .

Implications

The Method

Current Status

Appendices

// .. / / / . . . ×

Random Drop

The “intelligent dropping algorithms” Kleen refers to are likely variants on
random drop.

Bernstein: random drop adversely affects legitimate clients’ new connections.

The Solution . . .

Implications

The Method

Current Status

Appendices

// .. / / / . . . ×

Tests

. lower the queue size

similar to queue full of legitimate users

. three hosts

− attacker

− victim

− monitor

. the tools

− synbo

− connect.rb

− icmpecho.rb

The Solution . . .

Implications

The Method

Current Status

Appendices

// .. / / / . . . ×

. the results

2 4 6 8 10 12 14 16

10

20

30

40

queue length

secs to
overwhelm

Figure 4.1 without syn cookies

The Solution . . .

Implications

The Method

Current Status

Appendices

// .. / / / . . . ×

Conclusion

SYN cookies solve the full-queue problem but . . .

. the cost of missing fancy tcp options is greater today

. syn floods cause other problems, like network congestion

The Solution . . .

Implications

The Method

Current Status

Appendices

// .. / / / . . . ×

Appendices

Resources
Packet Rates

The Solution . . .

Implications

The Method

Current Status

Appendices

// .. / / / . . . ×

Resources

[1.] Dan J. Bernstein. SYN Cookies. http://cr.yp.to/syncookies.html

[2.] Dan J. Bernstein. personal email correspondence, Nov. 2001.

[3.] Brendan Conoboy and Erik Fichtner. ipfilter HOWTO. http://www.ob-
fuscation.org/ipf/ipf-howto.txt

[4.] Andi Kleen. personal email correspondence, Nov. 2001.

[5.] Christoph L. Schuba, et al. Analysis of a Denial of Service Attack on
TCP. (The “synkill paper”.)

[6.]W. Richard Stevens. TCP/IP Illustrated, V.1, The Protocols. Addison-
Wesley, 1994.

[7.]W. Richard Stevens and Gary R. Wright. TCP/IP Illustrated, V.2, The
Implementation. Addison-Wesley, 1995.

[8.]W. Richard Stevens. UNIX Network Programming, V.1, second ed. Pren-
tice Hall PTR, 1998.

The Solution . . .

Implications

The Method

Current Status

Appendices

// .. / / / . . . ×

Packet Rates

Net Type Mbps SYN’s/sec

T1 1.5 4,825

10 Base-T 10.0 31,025

T3 45.0 140,621

100 Base-T 100.0 310,025

OC-3 155.0 484,375

GigE 1,000.0 3,100,250

Table 5.1 packet rates of popular networks

The Solution . . .

Implications

The Method

Current Status

Appendices

// .. / / / . . . ×

fin

The Solution . . .

Implications

The Method

Current Status

Appendices

